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Abstract. More and more aspects of concurrency and concurrent pro-
gramming are becoming part of mainstream programming and software
engineering, as a result of several factors, such as the widespread avail-
ability of multi-core / parallel architectures and Internet-based systems.
Java has been one of the first mainstream languages providing a first-
class native support for multi-threading, with basic low level fine-grained
concurrency mechanisms. Besides this fine-grained support to concur-
rency, the identification of higher-level—more coarse-grained—support
is important as soon as programming and engineering complex concur-
rent applications is considered, helping to bridge the gap between system
design, implementation and testing.
Accordingly, in this paper we present simpA, a library-based extension of
Java which introduces a high-level coarse-grained support to prototyping
complex, multi-threaded / concurrent applications: Java programmers
are provided with an agent-oriented abstraction layer on top of the basic
OO layer to organize and structure applications.

1 Introduction

The widespread diffusion and availability of parallel machines given by multicore
architectures is going to have a significant impact in mainstream software devel-
opment, shedding a new light on concurrency and concurrent programming in
general. Besides multi-core architectures, Internet-based computing and Service-
Oriented Architectures / Web Services are further main driving factors introduc-
ing concurrency issues in the context of a large class of applications and systems,
no more related only to specific and narrow domains, such as high-performance
scientific computing.

As noted in [18], if on the one hand concurrency has been studied for about
30 years in the context of computer science fields such as programming languages
and software engineering, on the other hand this research has not had a strong
impact on mainstream software development. As a main example, Java has been
one of the first mainstream languages providing a first-class native support for
multi-threading, with basic low level concurrency mechanisms. Such a support
has been recently extended by means of a new library added to the JDK with
classes that implement well-known and useful higher-level synchronisation mech-
anisms such as barriers, latches, semaphores, providing a fine-grained and effi-
cient control on concurrent computations [9]. Besides this fine-grained support to



concurrency, it appears more and more important to introduce higher-level ab-
stractions that “help build concurrent programs, just as object-oriented abstrac-
tions help build large component-based programs” [18]. Agents and multi-agent
systems (MASs)—in their most general characterisation—are very promising
abstractions for this purpose, natively capturing and modelling decentralisation
of control, concurrency of activities, and interaction / coordination of activites:
therefore, they can be considered a good candidate for defining a paradigm for
mainstream concurrent programming, beyond OO.

Accordingly, in this paper we present simpA, a library-based extension of
Java which provides programmers with agent-oriented abstractions on top of the
basic OO layer, as basic building blocks to define the architecture of complex
(concurrent) applications. simpA is based on the A&A (Agents and Artifacts)
meta-model, recently introduced in the context of agent-oriented programming
and software engineering as a novel basic approach for modelling and engineering
multi-agent systems [15, 12]. Agents and artifacts are the basic high-level coarse-
grained abstractions available in A&A (and simpA): the former is used in A&A to
model (pro)-active and activity-oriented components of a system, encapsulating
the logic and control of such activities, while the latter is used to model function-
oriented components of the system, used by agents to support their activities.

The remainder of the paper is organised as follows. Section 2 describes in
more details the basic abstraction layer introduced by the A&A meta-model;
Section 3 describes the simpA framework and technology; Section 4 provides
some discussion about the overall approach. Finally, Section 5 and Section 6
conclude the paper with related works and a brief sum up.

2 Agents and Artifacts

As recently remarked by Liebermann [10]:

“The history of Object-Oriented Programming can be interpreted as a
continuing quest to capture the notion of abstraction—to create compu-
tational artifacts that represent the essential nature of a situation, and
to ignore irrelevant details.”

Metaphors and abstractions continue to play a fundamental role for computer sci-
ence and software engineering in general, in providing suitable conceptual means
to model, design and program software systems. The metaphors and abstractions
at the core of A&A are rooted in human cooperative working environments, in-
vestigated by socio-psychological theories such as Activity Theory (AT) [11].
This context is taken here as a reference example of a complex system, where
multiple concurrent activities are carried on in a coordinated manner, interact-
ing within some kind of working environment: humans do work concurrently
and cooperatively in the context of the same activities, interacting both directly,
by means of speech-based communication, and indirectly, by means of artifacts
and tools that are shared and co-used. In such systems, it is possible to easily
identify two basic kinds of entity: on the one side human workers, as the entities
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Fig. 1. (Left) An abstract representation of an application according to the A&A pro-
gramming model, as a collection of agents (circles) sharing and using artifacts (squares),
grouped in workspaces. (Right) An abstract representation of an artifact, with in evi-
dence the usage interface, with commands (control) to trigger the execution of opera-
tions, the observable properties and the manual.

responsible of pro-actively performing some kinds of activity; on the other side
artifacts and tools, as the entities that workers use to support their activities,
being resources (e.g. an archive, a coffee machine) or instruments mediating and
coordinating collective activities (e.g. a blackboard, a calendar, a task scheduler,
etc).

By drawning our inspiration from AT and human working environments,
A&A defines a coarse-graned abstraction layer in which two basic building blocks
are provided to organise an application (system), agents and artifacts. On the
one hand, the agent abstraction—in analogy with human workers—is meant to
model the (pro-)active part of the system, encapsulating the logic and the control
of such activities. On the other hand, the artifact abstraction—analogous to
artifacts and tools in human environments—is meant to model the resources and
the tools created and used by agents during their activities, either individually
or collectively. Besides agents and artifacts, the notion of workspace completes
the basic set of abstractions defined in A&A: a workspace is a logic container
of agents and artifacts, and can be used to structure the overall sets of entities,
defining a topology of the working environment and providing a way to frame
the interaction inside it (see Fig. 1, left).

2.1 Agent and Artifact Abstractions: Core Properties

In A&A the term “agent” is used in its etymological meaning of an entity “who
acts”, i.e. whose compuational behaviour accounts for performing actions in
some kinds of environment and getting information back in terms of perceptions.
In A&A agents’ actions and perceptions concern in particular the use of arti-
facts and direct communication with other agents. The notion of activity is used



to group related actions, as a way to structure the overall (possibly complex)
behaviour of the agent. So an agent in A&A is an activity-oriented component,
in the sense that it is designed to encapsulate the logic, execution and control
of some activities, targeted to the achievement of some objective. As a state-ful
entity, each agent has a long-term memory, used to store data and information
needed for its overall work, and a short-term memory, as a working memory used
to store temporary information useful when executing single activities. An agent
can carry on multiple activities concurrently, and each activity in execution de-
fines a context, as a local scope for storing information related to the specific
activity, contextualising the execution of actions and perceiving events from the
agent environment. Here it’s worth remarking that the notion of agent in simpA
is not meant to be comparable with models and architectures as typically found
in the context of intelligent agents or cognitive agent platforms, such as Jason,
2APL, 3APL, JACK, JADEX or alike: here the objective is not maximising flex-
ibility and autonomy so as to play in unpredictable and complex environments,
but having a basic simple abstraction which would make it natural and straight-
forward to design and program complex active behaviours, providing some strong
encapsulation properties for state and control of activities.

Artifacts instead are passive function-oriented components, i.e. designed to
provide some kind of functionality that can be used by agents. Passive here
means that, differently from the agent case, they do not encapsulate any thread
of control. The functionality of an artifact is structured in terms of operations,
whose execution can be triggered by agents through artifact usage interface (see
Fig. 2, left). Similarly to the notion of interface in case of objects or components,
the usage interface of an artifact defines a set of commands (interface controls)
that agents can use to trigger and control operation execution (like the control
panel of a coffee machine), each one identified by a label (typically equals to
the operation name to be triggered) and a list of input parameters. In this use
interaction there is no control coupling: when an agent triggers the execution of
an operation, it retains its control (flow) and the execution of the operation on
the artifact is carried on independently and asynchronously. This property is a
requirement when the basic notion of agent autonomy is considered.

The information flow from the artifact to agents is modelled in terms of
observable events generated by artifacts and perceived by agents. Besides the
controls for triggering the execution of operation, an artifact can define some
observable properties, as variables whose value can be inspected by agents dy-
namically, without necessarily executing operations on it (like the display of a
coffee machine).

2.2 Agent-Artifact Interaction: Use and Observation

The interaction between agents and artifacts mimics the way in which humans
use their artifacts. Let’s consider a coffee machine, for a simple but effective
analogy. The set of buttons of the coffee machine represents the usage interface,
while the displays used to show the state of the machine represent artifact ob-
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Fig. 2. Abstract representation of an artifact (on the left), and of an agent using an
artifact, by triggering the execution of on operation (center, step 1a) and observing the
related events generated (right, step 1b)

servable properties. The signals emitted by the coffee machine during its usage
represent observable events generated by the artifact.

The interaction takes place by means of a use action (stage 1a in Fig. 2,
center), which is provided to agents so as to trigger and control the execution of
an operation over an artifact. The observable events possibly generated by the
artifact executing an operation are collected by agent sensors, that are those
parts of the agent (body) connected to the environment where the agent is situ-
ated. Besides the generation of observable events, the execution of an operation
by an artifact typically results in updating the artifact inner state and possibly
artifact observable properties (Fig. 2, right).

Then, a sense action is provided to agents to explicitly retrieve / be aware
of the observable events possibly collected by their sensors (stage 1b in Fig. 2,
right); in other words, there is an “active sensing” model for managing per-
ceptions, since sensing—making the agent aware of the stimuli collected by the
sensors—is an action that must be explicitly performed by the agent itself.

As mentioned previously, no control coupling takes place between an agent
and an artifact with the execution of an operation. However, the triggering of an
operation is a synchronisation point between the agent (user) and the artifact
(used): if the use action is successfully executed, then it means that the execution
of the operation on the artifact has started.

3 The simpA Framework & Technology

simpA is an extension of the Java platform that supports the A&A abstractions
as first-class concepts, namely, as basic high-level building blocks to program
concurrent applications. This approach contrasts most existing ones modifying
object-oriented abstractions (classes, objects, methods) to model concurrency
aspects—such as e.g. [2]. Rather, we introduce the new A&A abstractions, and
use true object-orientation to model any basic low-level data structure used to



program agents and artifacts, or any information kept and exchanged by them
through interactions. This approach leaves concurrency and high-level organisa-
tion aspects orthogonal to the object-oriented abstraction layer: we argue that
this approach could lead to a more coherent programming framework for complex
applications.

simpA extension is realised as a library, exploiting Java annotations to define
the new programming constructs required: consequently, a simpA program can
be compiled and executed using the standard Java compiler and virtual machine,
without the need of a specific extension of the Java framework (preprocessors,
compilers, class loaders, or JVM patches). This choice has the advantage to max-
imise the reuse of an existing widely diffused platform (Java). Indeed, using the
library / annotations solution to implement a language and a platform exten-
sion has some revelant drawbacks, which derive from the fact that agents and
artifacts are not true real first-class abstractions for the language and the virtual
machine. Accordingly, part of the ongoing work is devoted towards the definition
and the prototype implementation of a new full-fledged language and platform
called simpAL. simpA technology is open-source and is available for download at
simpA web site1.

In the remainder of the section we give a more concrete taste of the A&A
approach by describing how an application based on agents and artifacts can
be designed and programmed on top of simpA. Table 1 reports the source code
of a simple application, used here as a reference to exemplify the programming
of agents and artifacts. The application creates a simple Cafeteria workspace,
composed by a single Waiter agent using two instances of a CoffeeMachine
artifact. The CoffeeMachine artifact mimics the behaviour of a coffee machine:
it can be used to make either coffees or teas. Essentially, it provides a usage
interface with controls for selecting the type of drink (coffee or tea) first, then
for making the drink. Then, while making the drink, it provides a usage interface
to adjust the sugar level and possibly to stop the operation (for short drink).
The Waiter agent is programmed with the objective to make a coffee and a tea
by exploiting two different coffee machines, and to deliver them when both are
ready within a certain amount of time, or just the coffee if the tea production
lasts too long.

A simpA application is typically booted by setting up the workspace(s), creat-
ing an initial set of artifacts—two CoffeeMachines in the example—and spawn-
ing agents—a single Waiter in this case. For this purpose, the Simpa class and the
ISimpaEnvironment interface provide suitable services to initialise and configure
the working environment. This example is part the basic examples provided in
simpA distribution, available on simpA web site.

3.1 Defining Agents

A requirement in simpA was to make the approach as agile as possible, min-
imising the number of classes to be introduced for defining both agents and

1 http://www.alice.unibo.it/simpa



artifacts. For that reason a one-to-one mapping has been adopted: just one class
is needed to define an agent template or an artifact template. Accordingly, to
define a new agent (template), only one class must be defined, extending the
alice.simpa.Agent base class provided by simpA API. The class name corre-
sponds to the agent template name. The elements defining an agent, activities
in particular, are mapped into class elements, suitably annotated. By defining a
template, it is possible at runtime to spawn an instance of such type of agent.
The execution of an agent consists in executing the activities as specified in its
template, starting from the main one.

Agent long-term memory is realised as an associative store called memo-
space, where the agent can dynamically attach, associatively read and retrieve
chunks of information called memo. A memo is a tuple, characterised by a label
and an ordered set of arguments, either bound or not to some data object (if
some is not bound, the memo is hence partially specified). A memo-space is just
a dynamic set of memos: a memo is identified by its label, and only one instance
of a memo can exist at a time. Each agent has internal actions to atomically and
associatively access and manipulate the memo space: to create a new memo, to
get/remove a memo with the specified label and / or content, and so on.

It is worth remarking here that instance fields of an agent class are not used:
the memo-space is the only data structure adopted for modelling agent long-term
memory.

Agent activities can be either atomic—i.e. not composed by sub-activities—
or structured, composed by some kinds of sub-activity. Atomic activities are im-
plemented as methods with the @ACTIVITY annotation, with no input parameters
and with void return type. The body of a the method specifies the computa-
tional behavior of the agent corresponding to the accomplishment of the activity.
Method local variables are used to encode data-structures representing the short-
term memory related to the specific activity. By default, the main activity of an
agent is called main, and must be defined by every new agent tamplate. By refer-
ring to the example reported in Table 1, a Waiter agent is defined with a long-
term memory composed by drink1 and drink2 variables, and by four atomic
activities: makeOneCoffee, makeOneTea, deliverBoth, deliverJustCoffee.

Structured activities can be described as activities composed (hierarchically)
by sub-activities. The notion of agenda is introduced to specify the set of the
potential sub-activities composing the activity, referenced as todo in the agenda.
Each todo specifies the name of the subactivity to execute, and optionally a
pre-condition. When a structured activity is executed, the todo in the agenda
are executed as soon as their pre-conditions hold. If no pre-condition is specified,
the todo is immediately executed. Then, multiple sub-activities can be executed
concurrently in the context of the same (super) activity. A structured activity is
implemented by methods with an @ACTIVITY WITH AGENDA annotation, contain-
ing todo descriptions as a list of @TODO annotations. Each @TODO must specify
the name of the related sub-activity to execute and optionally a pre property
specifying the precondition that must hold in order to execute the todo. A todo
can be specified to be persistent : in that case, once it has been completely exe-



cuted, it is re-inserted in the agenda so as to be possibly executed again. This is
useful to model cyclic behaviour of agents when executing some activity. Todo
preconditions are expressed as a boolean expression, with and / or connectors
(represented by , and ; symbols, respectively) over a basic set of predefined
predicates. Essentially, the predicates make it possible to specify conditions on
the current state of the activity agenda, in particular on (i) the state of the
sub-activitities (todo), if they completed or aborted or started, and on (ii) the
memos that could have been attached to the agenda. Besides holding informa-
tion useful for activities, memos are then used also to help the coordination of
the various sub-activities, by exploiting in the specification of a pre-condition
the predicate (memo), which tests the presence of a memo in the agenda.

By referring to the example reported in Table 1, the Waiter has a structured
main activity, with four todo: making a coffee (makeOneCoffee) and making a
tea (makeOneTea), as activities that can be performed concurrently as soon as
the main activity starts, and then either delivering the drinks (deliverBoth) as
soon as both the drinks are ready, or deliver just the coffe (deliverJustCoffee)
if only the tea is not available after a specific amount of time. At the end of the
activities, the primitive memo is used to create memos about the drinks (labelled
with drink1 and drink2), annotating information related to the fact that coffee
and the tea are done. Actually, in the case of makeOneTea activity, the memo
tea not ready is created instead if the agent does not perceive that the tea is
ready within a specific amount of time. In deliverJustCoffee and deliverBoth
activities the primitive getMemo is used instead to retrieve the content of a memo.

To perform their activities agents typically need to interact with their work-
ing environment, in particular with artifacts by means of use and sense actions
as described in previous section. For this purpose, the use and sense primitives
are provided respectively to trigger the execution of an operation over an arti-
fact, and for perceiving the observable events generated by the artifact as effect
of the execution. Before describing in details agent-artifact interaction, in next
sub-section we describe how to programs artifacts.

3.2 Defining Artifacts

Analogously to agents, also artifacts are mapped onto a single class.
An artifact template can be described by a single class extending the
alice.simpa.Artifact base class. The elements defining an artifact—its inner
and observable state and the operations defining its computational behaviour—
are mapped into class elements, suitably annotated. The instance fields of the
class are used to encode the inner state of the artifacts and observable properties,
while suitably annotated methods are used to implement artifact operations.

For each operation (command) listed in the usage interface, a method anno-
tated with @OPERATION and with void return type must be defined: the name
and parameters of the method coincide with the name and parameters of the
operations to be triggered. Operations can be either atomic, executed as a sin-
gle computational step represented by the content the @OPERATION method, or
structured, i.e. composed by multiple atomic steps. Structured operations are



public class Waiter extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="makeOneCoffee"),
@TODO(activity="makeOneTea"),
@TODO(activity="deliverBoth",

pre="completed(makeOneCoffee),
completed(makeOneTea)"),

@TODO(activity="deliverJustCoffee",
pre="completed(makeOneCoffee),

memo(tea_not_ready)"),
}) void main(){}

@ACTIVITY void makeOneCoffee() throws Exception {
SensorId sid = linkDefaultSensor();
ArtifactId id = lookupArtifact("cmOne");

use(id, new Op("selectCoffee"));
use(id, new Op("make"),sid);
sense(sid,"making_coffee");

focus(id,sid);
Perception p = null;
do {

use(id, new Op("addSugar"));
p = sense(sid,

"property_updated\\(\"sugarLevel\"\\)");
} while ((Double)(p.getContent())<0.5);

Perception p1 = sense(sid,"coffee_ready",5000);
memo("drink1",coffep.getContent(0));

}

@ACTIVITY void makeOneTea() throws Exception {
SensorId sid = linkDefaultSensor();
ArtifactId id = lookupArtifact("cmTwo");

use(id, new Op("selectTea"));
use(id, new Op("make"),sid);
try {

Perception p = sense(sid,"tea_ready",6000);
memo("drink2",coffep.getContent(0));

} catch (NoPerceptionException ex){
memo("tea_not_ready");
throw new ActivityFailed();

}
}

@ACTIVITY void deliverBoth() {
log("delivering "+

getMemo("drink1").getContent(0)+" "+
getMemo("drink2").getContent(0));

}

@ACTIVITY void deliverJustCoffee() {
log("delivering only "+

getMemo("drink1").getContent(0));
} }

public class Testcafeteria {
public static void main(String[] args){

ISimpaEnvironment env =
Simpa.getInstance("Cafeteria");

env.createArtifact("cmOne","CoffeeMachine");
env.createArtifact("cmTwo","CoffeeMachine");
env.spawnAgent("waiter","Waiter");

} }

@ARTIFACT_MANUAL(
states = {"idle","making"},
start_state = "idle" )

class CoffeeMachine extends Artifact {

@OBSPROPERTY String selection = "";
@OBSPROPERTY double sugarLevel = 0.0;

int nCupDone=0;
boolean makingStopped;

@OPERATION(states={"idle"})
void selectCoffee(){

updateProperty("selection", "coffee");
}

@OPERATION(states={"idle"})
void selectTea(){

updateProperty("selection", "tea");
}

@OPERATION(states={"idle"})
void make(){

if (selection.equals("")){
signal("no_drink_selected");

} else {
makingStopped = false;
switchToState("making");
signal("making_"+selection);
nextStep("timeToReleaseDrink");
nextStep("forcedToReleaseDrink");

}
}

@OPSTEP(tguard=3000)
void timeToReleaseDrink(){

releaseDrink();
}

@OPSTEP(guard="makingStopped")
void forcedToReleaseDrink(){

releaseDrink();
}

private void releaseDrink(){
String drink = selection+

"("+(++nCupDone)+
","+sugarLevel+")";

signal(selection+"_ready",drink);
updateProperty("selection", "");
updateProperty("sugarLevel", 0);
switchToState("idle");

}

@GUARD boolean makingStopped(){
return makingStopped;

}

@OPERATION(states={"making"})
void addSugar(){

double sl = sugarLevel + 0.1;
if (sl>1){ sl=1; }
updateProperty("sugarLevel", sl);

}

@OPERATION(states={"making"})
void stop(){

makingStopped = true;
} }

Table 1. A exemplifying case of simpA application, composed at runtime by a single
Waiter agent using two instances—cmOne and cmTwo—of the CoffeeMachine artifact



useful to implement those services that would need multiple interactions with—
possibly different—agents, users of the artifact, and that cannot be provided
“in one shot”. A structured operation is implemented by dynamically specifying
the operation steps composing the operation. Operation steps are implemented
by methods annotated with @OPSTEP, and can be triggered (enabled) by means
of the nextStep primitive specifying the name of the step to be enabled and
possibly its parameters. For each operation and operation step a guard can be
specified, i.e. a condition that must be true in order to actually execute the
operation / step after it has been enabled (triggered). Guards are implemented
as boolean methods annotated with the @GUARD annotation, with same param-
eters as the operation (step) guarded. The step is actually executed as soon as
its guard is evaluated to true. Guards can be specified also for an operation,
directly. Also temporal guards are supported, i.e. guards whose evaluation is
true when a specific delta time is elapsed after triggering. To define a temporal
guard, a tguard property must be specified inside the @OPSTEP annotation in the
place of guard: the property can be assigned with a long value greater that 0,
indicating the number of milliseconds that elapse between triggering and actual
execution. Multiple steps can be triggered as next steps of an operation at a
time: As soon as the guard of a triggered step is evaluated to true, the step is
executed—in mutual exclusion with respect to the steps of the other operations
in execution—and the other triggered steps of the operation are discarded. In
other words, an operation execution is composed by a linear sequence of steps.
If multiple steps are evaluated to be runnable at a time, one is chosen according
to the order in which they have been triggered with the nextStep primitive. It
is worth remarking that, in the overall, multiple structured operations can be in
execution on the same artifact at the same time, but with only one operation
step in execution at a time, enforcing mutual exclusion in accessing the artifact
state.

To be useful, an artifact typically should provide some level of observabil-
ity. This is achieved either by generating observable events through the signal
primitive or by defining observable properties. In the former case, the primi-
tive generates observable events that can be observed by the agent using the
artifact—i.e. by the agent which has executed the operation. An observable
event is represented by a tuple, with a label (string) representing the kind of
the event, and a set of arguments, useful to specify some information content. In
the latter case, observable properties are implemented as instance fields anno-
tated with the OBSPROPERTY annotation. Any change of the property by means
of the updateProperty primitive would generate an observable event of the
type property updated(PropertyName ) with the new value of the property as
a content. The observable events is observed by all the agents that are focussing
(observing) the artifact. More on this will be provided in next subsection, when
describing agent-artifact interaction.

Finally, the usage interface of an artifact can be partitioned in labelled states,
in order to allow a different usage interface according to the specific function-
ing state of the artifact. This is realised by specifying the annotation property



states when defining operations and observable properties, specifying the list of
observable states in which the specific property / operation is visible. The prim-
itive switchToState is provided to change the state of the artifact (changing
then the exposed usage interface).

In the example reported in Table 1, the CoffeeMachine artifact has two
basic functioning states, idle and making, with the former used as starting
state. In the idle state, the usage interface is composed by selectCoffee,
selectTea and make operations, the first two used to select the drink type and
the third one to start making the selected drink; in the making state, the usage
interface is composed by addSugar and stop operations, the first used to adjust
the sugar level during drink-making and the last possibly to stop the process
for having shorter drinks. Also, it has two observable properties, selection
which reports the type of the drink currently selected, and sugarLevel which
reports current level of the sugar: when, for example, selection is updated
by updateProperty, an observable event property updated("selection") is
generated. The operations selectCoffee and selectTea are atomic, instead
make is (can be) structured: if a valid drink selection is available, then two
possible alternative operation steps are scheduled, timeToReleaseDrink and
forcedToReleaseDrink. The first one is time-triggered, and it is executed 3
seconds after triggering. The second one is executed as soon as makingStopped
guard is evaluated to true. This can happens if the agent user executed the
stop operation while the coffee machine is making the coffee. In both cases, step
execution accounts for releasing the drink, by signaling a proper event of the
type coffee ready or tea ready, updating the observable properties value and
switching to the idle state.

Some other artifact features are not described in detail here for lack of space.
Among the other we mention: linkability—which accounts for dynamically com-
posing artifacts together through link interfaces, which are interfaces with oper-
ations that are meant to be invoked (linked) by other artifacts—and artifact
manual—which concerns the possibility to equip each artifact with a docu-
ment, written by the artifact programmer, containing a formal machine-readable
semantic-based description of artifact functionality and usage instructions (op-
erating instructions). The interested reader is forwarded to the documentation
available at simpA web site.

3.3 Agent-Artifact Interaction

Artifact use is the basic form of interaction between agents and artifacts. Ac-
tually, also artifact instantiation and artifact discovery are realised by means of
using proper artifacts—a factory and a registry artifacts—, which are available
in each workspace. However two high-level macros are provided, makeArtifact
and lookupArtifact, which encapsulate the interaction with such artifacts.

Following the A&A model, artifact use by a user agent involves two basic
aspects: (1) executing operations on the artifact, and (2) perceiving—through
agent sensors—the observable events generated by the artifact.



Agents execute operations on an artifact by using the interface controls pro-
vided by the artifact usage interface. The use basic action is provided for this
purpose, specifying the identifier of the target artifact, the operation to be trig-
gered and optionally the identifier of the sensor used to collect observable events
generated by the artifact. When the action execution succeeds, the return param-
eter returned by use is the operation unique identifier. If the action execution
fails—because, for instance, the interface control specified is not part of artifact
usage interface—an exception is generated. An agent can link (and unlink) any
number of sensors (of different kinds), according to the strategy chosen for sens-
ing and observing the environment, by means of specific primitives (linkSensor,
unlinkSensor, and linkDefaultSensor, to link a new default type of sensor).

In order to retrieve events collected by a sensor, the sense primitive is
provided. The primitive waits until either an event is collected by the sen-
sor, matching the pattern optionally specified as a parameter (for data-driven
sensing), or a timeout is reached, optionally specified as a further parame-
ter. As result of a successful execution of a sense, the event is removed from
the sensor and a perception related to that event—represented by an object
instance of the class Perception—is returned. If no perception are sensed
for the duration of time specified, the action generates an exception of the
kind NoPerceptionAvailableException. Pattern-matching is based on regular-
expression patterns, matched over the event type (a string).

Finally, a support for continuous observation is provided. If an agent is in-
terested in observing every event generated by an artifacts—including those
generated as a result of the interaction with other agents—two primitives can
be used, focus and unfocus. The former is used to start observing the artifact,
specifying a sensor to be used to collect the events and optionally the reg-ex filter
to define the set of events to observe. The latter one is used to stop observing
the artifact.

In the example reported in Table 1, in the makeCoffee activity the agent
uses the coffee machine cmOne (discovered by the lookupArtifact action) by
executing first a selectCoffee operation, ignoring possible events generated by
such operation execution, and then a make, specifying a sensor to collect events.
Then the agent, by means of a sense, waits to observe a making coffee event,
meaning that the artifact started making the coffee. The agent then interacts
with the machine so as to adjust the sugar level: this is done by focussing on the
artifact and acting upon the addSugar, until the observable property reporting
the sugar level reaches 0.5. Then the activity is blocked until coffee ready event
is perceived. While performing a makeOneCoffee activity, the agent carries on
also a makeOneTea activity: as a main difference there, if the agent does not
observe the tea ready event within six seconds after having triggered the make
operation, then a memo tea not ready is taken and the activity fails (by means
of the generation of an exception).

Actually, simpA provides a basic support also for agent direct communication,
with a tell(ReceiverId,Msg) primitive to send a message to another agent, and
a listen(SensorId,Filter)—analogous to focus primitive—to specify sensors



to be used to collect the messages). So also for direct communication, sensors
and sensing primitives are exploited to collect and be aware of perceptions, in
this case related to the arrival of a message.

4 Discussion

The main objective of simpA is to simplify the prototyping of complex applica-
tions involving elements of concurrency, by introducing high level abstractions
on top of the basic Object-Oriented layer.

As a first benefit, the level of abstraction underlying the approach is meant to
promote an agile design of the application and then to reduce the gap between
such design and the implementation level. At the design level, by adopting a
task oriented approach as typically promoted by agent-oriented methodologies
[5], the task-oriented and function-oriented parts of the system are identified,
driving to the definition of the agents and artifacts as depicted by the A&A
model, and then to the implementation in simpA.

Then, the approach aims at providing agile but quite general means to or-
ganise and manage complex active and passive behaviours. For the former, the
notion of activity and the hierarchical activity model adopted in the agent ab-
straction make it possible to describe in a quite synthetic and readable way
articulated active behaviours, abstracting away from the complexity related to
threads creation, management and coordination. Besides the notion of activity,
the very notion of agent as the state-full entity responsible for activity execution
strengthen the level of encapsulation adopted to structure active parts. For the
latter, the model of artifact adopted allows the programmer to specify complex
functionalities (operations) possibly shared and exploited by multiple agents con-
currently, without the need to explicitly use lower-level Java mechanisms such
as synchronised blocks or wait / notify synchronisation primitives. On the one
side, mutual exclusion in accessing and modifying artifact inner state is guar-
anteed by having only one operation step in execution at a time. On the other
side, possible dependencies between operations can be explicitly taked into the
account by defining the operation (step) guards.

Finally, besides the individual component level, the approach has been con-
ceived to simplify the development of systems composed by multiple agents
that work together, coordinating their activities by exploiting suitable coordi-
nation artifacts [13]. More generally, the problems that are typically considered
in the context of concurrent programming involving the interaction and coor-
dination of multiple processes—examples are producer-consumer, readers-and-
writers, dining-philosophers—can be naturally modelled in terms of agents and
artifacts, providing solutions that in our opinion are more clear and “high-level”
with respect to those mixing object-oriented abstractions—threads and low-level
synchronisation mechanism—as in the case of Java. For instance, producers-
consumers problems are naturally modelled in terms of producer and consumer
agents sharing and exploiting a bounded buffer artifact; readers-and-writers
problems in terms of reader and writer agents that use a suitably designed



rw-lock coordination artifact to coordinate their access to a shared resource;
dining-philosophers, in terms of a set of philosopher agents sharing and using
a table, which encapsulates and enforces those coordination rules that make it
possible to handle mutual exclusion in using chopsticks and to avoid deadlock
situations. For the interested readers, these and other problems are included
among the examples provided in simpA distribution, not reported here for lack
of space.

5 Related Works

simpA is implemented on top of CARTAGO, a Java-based platform for program-
ming artifact-based working environments for MAS [17]. While simpA introduces
a specific (simple) programming model for programming agents, CARTAGO is
focussed solely on artifacts—programming and API for agents to use them—,
and conceptually it can be integrated with heterogeneous agent platforms—
including cognitive agent platforms, extending them to support artifact-based
environments. A first concrete example of such a possibility is described in [16],
where CARTAGO is integrated with the Jason agent platform [3], enabling Jason
agents to create, share and use artifacts.

The artifact abstraction is a generalisation of coordination artifacts—i.e. ar-
tifacts encapsulating coordination functionalities, introduced in [13]. In A&A
artifacts are the basic building blocks that can be used to engineer the working
environments where agents are situated: agent environment then play a funda-
mental role here in engineering the overall MAS as first-order entity that can
be designed so as to encapsulate some kind of responsibility (functionality, ser-
vice). This perspective is explored in several research works appeared recently
in MAS literature: a survey can be found in [19]. simpA is implemented on top
of CARTAGO, a Java-based platform for programming artifact-based working
environments for MAS [17].

Among the agent-oriented extensions of Java we cite here JACK [6], and
JADEX [14], which extend the basic Java platform in order to support the
programming of intelligent agents, based on the BDI architecture and the FIPA
standards. These approaches—as most of the other cognitive agent programming
platforms—are typically targeted to the engineering of distributed intelligent
systems for complex application domains.

Among the agent-oriented Java-based platforms based on flat Java, with
no extension of the basic language / platform, we mention here JADE [7].
JADE provides a general-purpose middleware that complies with the FIPA spec-
ifications for developing peer-to-peer distributed agent based applications. A
main conceptual and practical difference between simpA and JADE concerns
the high-level first-class abstractions adopted to organise a software system: in
JADE there are agents interacting by means of FIPA ACL, in simpA there are
agents and artifacts. Then, besides the support for FIPA ACL, JADE adopts a
behaviour-based programming model for programming agents. From this point
of view, activities in simpA are similar to behaviours in JADE, with the main



difference that in simpA the definition of structured activities composed by sub-
activities is done declaratively by defining the activity agenda, while in JADE
is done operationally, by creating and composing objects of specific classes.

Finally, the extension of the OO paradigm toward concurrency—i.e. object-
oriented concurrent programming (OOCP)—has been (and indeed is still) one
of the most important and challenging themes in the OO research. Accordingly,
a quite large amount of theoretical results and approaches have been proposed
since the beginning of the 80’s; it is not possible to report here a full list of
all the approaches: the interest reader is forwarded to surveys such as [4, 20].
Among the main examples, active objects [8] and actors [1] have been the root
of entire families of approaches. The approach proposed in this paper shares the
aim of actor and active-objects approaches, i.e introducing a general-purpose
abstraction layer to simplify the development of concurrent applications. Dif-
ferently from actor-based approaches, in A&A and simpA also the passive com-
ponents of the systems are modelled as first-class entities (the artifacts), be-
sides the active parts (actors in actor-based systems). Differently from active-
object-based approaches—where typically active-objects are objects with further
capabilities—, in simpA a strong distinction between active and passive entities
is promoted: agents and artifacts have completely different properties, with a
clear distinction at the design level of their role, i.e. encapsulating pro-active
/ task-oriented behaviour (agents) and passive / function-oriented behaviour
(artifacts).

6 Conclusion

More and more concurrency is going to be part of mainstream programming
and software engineering, with applications able to suitably exploit the inher-
ent concurrency support provided by modern hardware architecture—such as
multi-core architectures—and by network-based environments and related tech-
nologies, such as Internet and Web Services. This calls for—quoting Sutter and
Larus [18]—“[...]higher-level abstractions that help build concurrent programs,
just as object-oriented abstractions help build large componentised programs.”.

Along this line, in this paper we presented simpA, a library extension over
the basic Java platform that aims at simplifying the development of complex
(concurrent) applications by introducing a simple high-level agent-oriented ab-
straction layer over the OO layer. Future work will be devoted on finalising a
formal model for simpA basic programmming model on the one side, and defining
a full fledged simpA language and virtual machine on top of the Java platform.
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